Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression.

نویسندگان

  • Hui Xie
  • Ping-Li Xie
  • Xian-Ping Wu
  • San-Mei Chen
  • Hou-De Zhou
  • Ling-Qing Yuan
  • Zhi-Feng Sheng
  • Si-Yuan Tang
  • Xiang-Hang Luo
  • Er-Yuan Liao
چکیده

AIMS Omentin-1 (also known as intelectin-1) is a recently identified visceral adipose tissue-derived cytokine that is inversely related to obesity. Our previous study showed that omentin-1 inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells (CVSMCs) in vitro. This study was undertaken to investigate the effects of omentin-1 on arterial calcification and bone metabolism in vivo. METHODS AND RESULTS In vitro, omentin-1 stimulated production of osteoprotegerin (OPG) and inhibited production of receptor activator for nuclear factor κB ligand (RANKL) in both CVSMCs and osteoblasts. In vivo, adenovirus-mediated over-expression of omentin-1 attenuated arterial calcification and bone loss in OPG(-/-) mice. All these in vitro and in vivo actions were abrogated by blockade of the PI3K-Akt signalling pathway. Furthermore, omentin-1 reduced serum levels of RANKL, tartarate-resistant acid phosphatase-5b and osteocalcin, all of which are increased dramatically in OPG(-/-) mice. CONCLUSION These data suggest that omentin-1 ameliorates arterial calcification and bone loss in vivo through the regulation of the RANK signalling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis

Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG-/-) mice exhibit severe alveolar bone loss with enhanced bone resorption. ...

متن کامل

Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification.

RATIONALE Arterial calcification and osteoporosis are associated in postmenopausal women. RANK (the receptor activator of nuclear factor kappaB), RANKL (RANK ligand), and osteoprotegerin are key proteins in bone metabolism and have been found at the site of aortic calcification. The role of these proteins in vasculature, as well as the contribution of estrogen to vascular calcification, is poor...

متن کامل

Increased calcification in osteoprotegerin-deficient smooth muscle cells: Dependence on receptor activator of NF-κB ligand and interleukin 6.

OBJECTIVE Vascular calcification is highly correlated with cardiovascular disease morbidity and mortality. Osteoprotegerin (OPG) is a secreted decoy receptor for receptor activator of NF-κB ligand (RANKL). Inactivation of OPG in apolipoprotein E-deficient (ApoE-/-) mice increases lesion size and calcification. The mechanism(s) by which OPG is atheroprotective and anticalcific have not been enti...

متن کامل

The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass

The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7-/- mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7-...

متن کامل

Combined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System

Background: Tissue engineering using Stem cell from Human Exfoliated Deciduous Teeth (SHED) and a natural biomaterials biomaterial scaffold has become a promising therapy for the alveolar bone defect. The aim of this study was to analyze the Osteoprotegerin (OPG) and Receptor Activator of NF-Κb ligand (RANKL) expression after the application of Hydroxyapatite scaffold and SHED.Methods: A labora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2011